ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность с центром I , вписанная в грань ABC треугольной пирамиды SABC , касается отрезков AB , BC , CA в точках D , E , F соответственно. На отрезках SA , SB , SC отмечены соответственно точки A' , B' , C' так, что AA'=AD , BB'=BE , CC'=CF ; S' – точка на описанной сфере пирамиды, диаметрально противоположная точке S . Известно, что SI является высотой пирамиды. Докажите, что точка S' равноудалена от точек A' , B' , C' . Решение |
Страница: << 5 6 7 8 9 10 11 [Всего задач: 54]
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям при всех натуральных n. Докажите, что если все числа x1, x2, y1, y2 больше 1, то xn > yn при каком-нибудь натуральном n.
Известно, что многочлен (x + 1)n – 1 делится на некоторый многочлен P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0 чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на k + 1.
Страница: << 5 6 7 8 9 10 11 [Всего задач: 54] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|