Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.

Вниз   Решение


Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O.
Докажите, что   SAKON + SCLOM = SBKOL + SDNOM.

ВверхВниз   Решение


Автор: Фольклор

В выпуклом четырёхугольнике ABCD:  ∠ВАС = 20°,  ∠ВСА = 35°,  ∠ВDС = 40°,  ∠ВDА = 70°.
Найдите угол между диагоналями четырёхугольника.

ВверхВниз   Решение


На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?

ВверхВниз   Решение


Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

ВверхВниз   Решение


Автор: Фольклор

Найдите все простые числа p, q и r, для которых выполняется равенство:  p + q = (p – q)r.

ВверхВниз   Решение


Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

ВверхВниз   Решение


Как расположить в пространстве спичечный коробок, чтобы его проекция на плоскость имела наибольшую площадь?

ВверхВниз   Решение


Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 110144  (#03.4.8.6)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 4-
Классы: 7,8,9

Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

Прислать комментарий     Решение

Задача 108206  (#03.4.8.7)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Иванов С.

В треугольнике ABC угол C – прямой. На стороне AC нашлась такая точка D, а на отрезке BD – такая точка K, что  ∠B = ∠KAD = ∠AKD.
Докажите, что  BK = 2DC.

Прислать комментарий     Решение

Задача 110146  (#03.4.8.8)

Темы:   [ Необычные конструкции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 7,8,9

Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.
Прислать комментарий     Решение


Задача 110132  (#03.4.9.1)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

Прислать комментарий     Решение

Задача 110140  (#03.4.9.2)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9,10

По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .