ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Числа a, b, c таковы, что уравнение x³ + ax² + bx + c = 0 имеет три действительных корня. Докажите, что если –2 ≤ a + b + c ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2]. На столе лежат n спичек (n > 1). Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до n – 1, а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш. Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой. Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни. Существует ли такой квадратный трёхчлен P(x) с целыми коэффициентами, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается одними единицами? Даны 19 карточек. Можно ли на каждой из карточек написать ненулевую цифру так, чтобы из этих карточек можно было сложить ровно одно 19-значное число, кратное на 11? Последовательность (an) задана условиями a1= 1000000 , an+1=n[ На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.) Четырехугольник ABCD описан около окружности. Биссектрисы внешних углов A и B пересекаются в точке K , внешних углов B и C – в точке L , внешних углов C и D – в точке M , внешних углов D и A – в точке N . Пусть K1 , L1 , M1 , N1 – точки пересечения высот треугольников ABK , BCL , CDM , DAN соответственно. Докажите, что четырехугольник K1L1M1N1 – параллелограмм. AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC. |
Страница: 1 2 >> [Всего задач: 8]
Найдите все пары чисел x,y
Известно, что существует число S , такое, что если a+b+c+d=S и
Даны N ≥ 3 точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.
AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.
Докажите, что для любого многочлена P с целыми коэффициентами и любого натурального k существует такое натуральное n, что P(1) + P(2) + ... + P(n) делится на k.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке