ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 110752

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса делит дугу пополам ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 4
Классы: 8,9,10

В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


Прислать комментарий     Решение

Задача 110753

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три прямые, пересекающиеся в одной точке ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9,10

Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 110754

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Центральная симметрия помогает решить задачу ]
[ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 9,10

Даны две окружности, пересекающиеся в точках P и Q . C – произвольная точка одной из окружностей, отличная от P и Q ; A , B – вторые точки пересечения прямых CP , CQ с другой окружностью. Найдите геометрическое место центров окружностей, описанных около треугольников ABC .
Прислать комментарий     Решение


Задача 110756

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
[ Параллельный перенос ]
[ Правильные многогранники (прочее) ]
Сложность: 5-
Классы: 10,11

Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному?
Прислать комментарий     Решение


Задача 110755

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Биссектриса делит дугу пополам ]
[ Композиции движений. Теорема Шаля ]
[ Композиция центральных симметрий ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 7-
Классы: 9,10,11

Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .