Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]
Задача
111806
(#08.4.11.5)
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На острове живут
100
рыцарей и
100
лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно
100
человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
Задача
111799
(#08.4.11.6)
|
|
Сложность: 4 Классы: 9,10,11
|
На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что ∠AKB = ∠ADC. Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.
Задача
111800
(#08.4.11.7)
|
|
Сложность: 4 Классы: 9,10,11
|
Числа x1, x2, ..., xn таковы, что x1 ≥ x2 ≥ ... ≥ xn ≥ 0 и Докажите, что
Задача
111801
(#08.4.11.8)
|
|
Сложность: 5 Классы: 8,9,10,11
|
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
Задача
111877
(#08.5.9.1)
|
|
Сложность: 4- Классы: 7,8,9
|
Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]