Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Велосипедист путешествует по кольцевой дороге, двигаясь в одном направлении. Каждый день он проезжает 71 км и останавливается ночевать на обочине. На дороге есть аномальная зона длины 71 км. Если велосипедист останавливается в ней на ночлег на расстоянии y км от одной границы зоны, просыпается он в противоположном месте зоны, на расстоянии y км от другой её границы. Докажите, что в каком бы месте велосипедист ни начал своё путешествие, рано или поздно он остановится в нём на ночлег или же в нём проснётся.

Вниз   Решение


Некоторый алфавит состоит из 6 букв, которые для передачи по телеграфу кодированы так:

.          -          . .          - -          . -          -   .

При передаче одного слова не сделали промежутков, отделяющих букву от буквы, так что получилась сплошная цепочка из точек и тире, содержащая 12 знаков. Сколькими способами можно прочитать переданное слово?

ВверхВниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


Существуют ли такие попарно различные натуральные числа m, n, p, q, что  m + n = p + q  и  

ВверхВниз   Решение


В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 111810  (#08.4.9.1)

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9

Числа a, b, c таковы, что  a²(b + c) = b²(a + c) = 2008  и  a ≠ b.  Найдите значение выражения  c²(a + b).

Прислать комментарий     Решение

Задача 111811  (#08.4.9.2)

Темы:   [ Числовые таблицы и их свойства ]
[ Процессы и операции ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9,10

В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

Прислать комментарий     Решение

Задача 111812  (#08.4.9.3)

Темы:   [ Свойства симметрий и осей симметрии ]
[ Шестиугольники ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Прислать комментарий     Решение

Задача 111813  (#08.4.9.4)

Темы:   [ Свойства коэффициентов многочлена ]
[ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4+
Классы: 9,10,11

Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

Прислать комментарий     Решение

Задача 111814  (#08.4.9.5)

Темы:   [ Деление с остатком ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 8,9

Дано натуральное число  n > 1.  Для каждого делителя d числа  n + 1,  Петя разделил число n на d с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .