Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Пусть a1, a2, ..., a10 – натуральные числа,  a1 < a2 < ... < a10.  Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что  a10 > 500.

Вниз   Решение


Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

ВверхВниз   Решение


Дано натуральное число  n > 1.  Для каждого делителя d числа  n + 1,  Петя разделил число n на d с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.

ВверхВниз   Решение


По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?

ВверхВниз   Решение


Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов. Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов). При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать. Какое наибольшее количество хорд заведомо сможет провести Коля?

ВверхВниз   Решение


Автор: Джукич Д.

Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

ВверхВниз   Решение


В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

ВверхВниз   Решение


Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.

ВверхВниз   Решение


Несколько человек в течение t минут наблюдали за улиткой. Каждый наблюдал за ней ровно 1 минуту и заметил, что за эту минуту улитка проползла ровно 1 метр. Ни в один момент времени улитка не оставалась без наблюдения. Какой наименьший и какой наибольший путь могла она проползти за эти t минут?

ВверхВниз   Решение


а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

ВверхВниз   Решение


В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.

ВверхВниз   Решение


В НИИЧАВО работают несколько научных сотрудников. В течение 8-часового рабочего дня сотрудники ходили в буфет, возможно по нескольку раз. Известно, что для каждых двух сотрудников суммарное время, в течение которого в буфете находился ровно один из них, оказалось не менее x часов  (x > 4).  Какое наибольшее количество научных сотрудников могло работать в этот день в НИИЧАВО (в зависимости от x)?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 111877  (#08.5.9.1)

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?

Прислать комментарий     Решение

Задача 111878  (#08.5.9.2)

Темы:   [ Кубические многочлены ]
[ Свойства коэффициентов многочлена ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].
Прислать комментарий     Решение


Задача 111879  (#08.5.9.3)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Удвоение медианы ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4+
Классы: 9,10

В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.

Прислать комментарий     Решение

Задача 111880  (#08.5.9.4)

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Покрытия ]
[ Классическая комбинаторика (прочее) ]
Сложность: 5+
Классы: 9,10,11

В НИИЧАВО работают несколько научных сотрудников. В течение 8-часового рабочего дня сотрудники ходили в буфет, возможно по нескольку раз. Известно, что для каждых двух сотрудников суммарное время, в течение которого в буфете находился ровно один из них, оказалось не менее x часов  (x > 4).  Какое наибольшее количество научных сотрудников могло работать в этот день в НИИЧАВО (в зависимости от x)?

Прислать комментарий     Решение

Задача 111881  (#08.5.9.5)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Шахматные доски и шахматные фигуры ]
[ Наибольшая или наименьшая длина ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9,10

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .