ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В трапеции ABCD с основаниями AD и BC  P и Q – середины диагоналей AC и BD соответственно.
Докажите, что если ∠DAQ = ∠CAB, то ∠PBA = ∠DBC.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 115777

Темы:   [ Трапеции (прочее) ]
[ Теорема синусов ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

В трапеции ABCD с основаниями AD и BC  P и Q – середины диагоналей AC и BD соответственно.
Докажите, что если ∠DAQ = ∠CAB, то ∠PBA = ∠DBC.

Прислать комментарий     Решение

Задача 115783

Темы:   [ Частные случаи тетраэдров (прочее) ]
[ Объем тетраэдра и пирамиды ]
[ Площадь и объем (задачи на экстремум) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Основанием пирамиды является правильный треугольник со стороной 1. Из трёх углов при вершине пирамиды два – прямые.
Найдите наибольший объём пирамиды.

Прислать комментарий     Решение

Задача 110752

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса делит дугу пополам ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 4
Классы: 8,9,10

В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


Прислать комментарий     Решение

Задача 110761

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ ГМТ - окружность или дуга окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ и вписанный угол ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие.
Прислать комментарий     Решение


Задача 110763

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4
Классы: 8,9

Назовём два неравных треугольника похожими, если можно обозначить их ABC и A'B'C' так, чтобы выполнялись равенства  AB = A'B',  AC = A'C'  и
B = ∠B'.  Существуют ли три попарно похожих треугольника?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .