Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

Вниз   Решение


Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

ВверхВниз   Решение


Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3.

ВверхВниз   Решение


30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.

ВверхВниз   Решение


Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

ВверхВниз   Решение


Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Bерно ли, что a перпендикулярна α?

ВверхВниз   Решение


Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

ВверхВниз   Решение


Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 185]      



Задача 66409

Темы:   [ Трапеции (прочее) ]
[ Подобные треугольники (прочее) ]
[ Гомотетия и поворотная гомотетия (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Mudgal A.

Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.
Прислать комментарий     Решение


Задача 116066

Темы:   [ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательная окружность ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Два равносторонних треугольника ABC и CDE имеют общую вершину (см. рис). Найдите угол между прямыми AD и BE.

Прислать комментарий     Решение

Задача 116067

Темы:   [ Необычные построения (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема Пифагора (прямая и обратная) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

Прислать комментарий     Решение

Задача 116079

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Метод координат на плоскости ]
Сложность: 3
Классы: 8,9

Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

Прислать комментарий     Решение

Задача 116085

Темы:   [ Перегруппировка площадей ]
[ Трапеции (прочее) ]
[ Параллелограммы (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 10,11

Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .