ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0? Доказать, что при любом целом положительном n сумма
Найдите радиус наибольшей окружности, касающейся изнутри двух пересекающихся окружностей с радиусами R и r, если расстояние между их центрами равно a Докажите, что множество простых чисел вида p = 6k + 5 бесконечно. Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает
значение 2. В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если ∠AOB = α, а радиус круга равен r. Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100? Доказать, что число 100...001, в котором 21974 + 21000 – 1 нулей, составное. В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что треугольник ABC правильный. К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны. Решить в целых числах уравнение x + y = x² – xy + y². Имеется 1000 монет, среди них 0, 1 или 2 фальшивые. Известно, что фальшивые монеты имеют одинаковую массу, отличную от массы нефальшивых монет. Можно ли за три взвешивания на чашечных весах без гирь определить, есть ли фальшивые монеты и легче они или тяжелее нормальных? (Количество монет определять не надо.) Доказать, что в десятичной записи чисел 2n + 1974n и 1974n содержится одинаковое количество цифр. Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.
Дан треугольник ABC. Найдите на прямой AB точку M, для которой
сумма радиусов описанных окружностей треугольников ACM и BCM
была бы наименьшей.
В государстве имеют хождение монеты в один золотой и в один грош, причём один золотой составляет 1001 грошей. a ≡ 68 (mod 1967), a ≡ 69 (mod 1968). Найти остаток от деления a на 14. Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.
Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.
На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A. В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке. В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми. Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной. B треугольнике ABC угол A равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно AB + AC. |
Страница: 1 2 >> [Всего задач: 6]
Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?
Даны радиусы r и R двух непересекающихся окружностей. Oбщие внутренние касательные этих окружностей перпендикулярны.
Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что AA' = CC' и BB' = DD'.
B треугольнике ABC угол A равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно AB + AC.
Есть два платка: один в форме квадрата, другой – в форме правильного треугольника, причём их периметры одинаковы.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке