ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Построить прямоугольный треугольник, зная, что часть катета от вершины острого угла до точки касания с вписанной окружностью равна данному отрезку m , а противолежащий этому катету угол равен данному углу α . На рисунке изображен график функции у = kx + b . Сравните |k| и |b|. Найдите наименьшее натуральное значение n, при котором число n! делится на 990. Внутри правильного n-угольника со стороной a вписано n равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов. Известно, что В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 557]
В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC, AB = BC.
Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?
В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.
Найдите все пары простых чисел, разность квадратов которых является простым числом.
Решите неравенство:
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 557]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке