Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что AKB'+ BKA'= ALB'+ BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 2, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.

ВверхВниз   Решение


Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

ВверхВниз   Решение


В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

ВверхВниз   Решение


Точки E и F – середины сторон AB и AD параллелограмма ABCD, а отрезки CE и BF пересекаются в точке K. Точка M лежит на отрезке EC, причём  BM || KD.  Докажите, что площади треугольника KFD и трапеции KBMD равны.

ВверхВниз   Решение


Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 116154

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Ортоцентр и ортотреугольник ]
[ Поворот помогает решить задачу ]
Сложность: 2
Классы: 8,9

Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

Прислать комментарий     Решение

Задача 116155

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 2+
Классы: 8,9

B равнобедренном треугольнике ABС на боковой стороне отмечена точка M так, что отрезок равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.

Прислать комментарий     Решение

Задача 116156

Темы:   [ Построения одной линейкой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Из листа бумаги в клетку вырезали квадрат 2×2.
Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.

Прислать комментарий     Решение

Задача 116161

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Цилиндр ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Bерно ли, что a перпендикулярна α?

Прислать комментарий     Решение

Задача 116157

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

B трапеции ABCD  AB = BC = CDCH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .