Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

Вниз   Решение


У Коли есть отрезок длины k, а у Лёвы — отрезок длины l. Сначала Коля делит свой отрезок на три части, а потом Лёва делит на три части свой отрезок. Если из получившихся шести отрезков можно сложить два треугольника, то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от отношения k/l, может обеспечить себе победу, и как ему следует играть?

ВверхВниз   Решение


а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

ВверхВниз   Решение


Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня) $$ \sqrt{(* + *)\cdot \sqrt{(* + *) \cdot \sqrt{ \ldots \sqrt{*+*}}}} . $$ Могло ли значение полученного выражения оказаться целым числом?

ВверхВниз   Решение


Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.
Найдите сумму абсцисс точек пересечения этих прямых с прямой  y = 100 – x.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116210  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шестиугольники ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?

Прислать комментарий     Решение

Задача 116274  (#2)

Темы:   [ Метод координат на плоскости ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.
Найдите сумму абсцисс точек пересечения этих прямых с прямой  y = 100 – x.

Прислать комментарий     Решение

Задача 116275  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

Прислать комментарий     Решение

Задача 116276  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 8,9

Докажите, что для любого натурального числа N найдутся такие две пары натуральных чисел, что суммы в парах одинаковы, а произведения отличаются ровно в N раз.

Прислать комментарий     Решение

Задача 116277  (#5)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Средняя линия трапеции ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC; AA1, BB1 – его высоты. Из точки A1 опустили перпендикуляры на прямые AC и AB, а из точки B1 опустили перпендикуляры на прямые BC и BA. Докажите, что основания перпендикуляров образуют равнобокую трапецию.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .