ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4? Если сумма квадратов двух целых чисел делится на 3, то каждое из этих чисел делится на 3. Доказать. Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба. Даны прямая и точка вне неё. Как с помощью циркуля и линейки построить прямую, параллельную данной прямой и проходящую через данную точку, проведя при этом возможно меньшее число линий (окружностей и прямых), так что последняя проведённая линия — это искомая прямая? Какого числа линий Вам удалось добиться? По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток? Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй. |
Страница: 1 2 >> [Всего задач: 8]
Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.
Даны различные натуральные числа a1, a2, ..., a14. На доску выписаны все 196 чисел вида ak + al, где 1 ≤ k, l ≤ 14. Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?
На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK.
Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений ax11 + bx4 + c = 0, bx11 + cx4 + a = 0, cx11 + ax4 + b = 0 имеют общий корень. Докажите, что все три уравнения имеют общий корень.
Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 3)(n + 4) будет целым.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке