Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова ИНТЕГРИРОВАНИЕ, а Маша сделала то же самое со словом СУПЕРКОМПЬЮТЕР. У кого получилось больше слов?

Вниз   Решение


Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?

ВверхВниз   Решение


Ненулевые числа a, b, c таковы, что  ax² + bx + c > cx  при любом x. Докажите, что  cx² – bx + a > cx – b  при любом x.

ВверхВниз   Решение


Натуральное число b назовём удачным, если для любого натурального a, такого, что a5 делится на b², число a² делится на b.
Найдите количество удачных натуральных чисел, меньших 2010.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Начертите два четырехугольника с вершинами в узлах сетки, из которых можно сложить а) как треугольник, так и пятиугольник; б) и треугольник, и четырехугольник, и пятиугольник. Покажите, как это можно сделать.

ВверхВниз   Решение


Автор: Ивлев Б.М.

В куче $n$ камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких $n$ начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник?

ВверхВниз   Решение


Автор: Шноль Д.Э.

В парке росли липы и клены. Кленов среди них было 60%. Весной в парке посадили липы, после чего кленов стало 20%. А осенью посадили клены, и кленов стало снова 60%. Во сколько раз увеличилось количество деревьев в парке за год?

ВверхВниз   Решение


В большую шкатулку положили 10 шкатулок поменьше. В каждую из вложенных шкатулок либо положили 10 еще поменьше, либо ничего не положили. В каждую из меньших опять положили или 10, или ни одной, и т.д. После этого оказалось ровно 2006 шкатулок с содержимым. Сколько пустых?

ВверхВниз   Решение


Автор: Шноль Д.Э.

У подводного царя служат осьминоги с шестью, семью или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или 8 ног, всегда говорят правду. Встретились четыре осьминога. Синий сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас 27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у нас 25 ног". У кого сколько ног?

ВверхВниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116638  (#10.1)

Темы:   [ Числовые таблицы и их свойства ]
[ Задачи с ограничениями ]
Сложность: 4
Классы: 8,9,10

Автор: Карасев Р.

В каждой клетке таблицы, состоящей из 10 столбцов и n строк, записана цифра. Известно, что для каждой строки A и любых двух столбцов найдётся строка, отличающаяся от A ровно в этих двух столбцах. Докажите, что  n ≥ 512.

Прислать комментарий     Решение

Задача 116639  (#10.2)

Темы:   [ Исследование квадратного трехчлена ]
[ Арифметическая прогрессия ]
[ Предел функции ]
Сложность: 3
Классы: 8,9,10

На доске написаны девять приведённых квадратных трёхчленов:  x² + a1x + b1x² + a2x + b2,  ...,  x² + a9x + b9. Известно, что последовательности  a1, a2, ..., a9  и  b1, b2, ..., b9  – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?

Прислать комментарий     Решение

Задача 116640  (#10.3)

Темы:   [ Теория графов (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 8,9,10

Назовём компанию k-неразбиваемой, если при любом разбиении её на k групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

Прислать комментарий     Решение

Задача 116641  (#10.4)

Темы:   [ Вневписанные окружности ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Периметр треугольника ABC равен 4. На лучах AB и AC отмечены точки X и Y так, что  AX = AY = 1.  Отрезки BC и XY пересекаются в точке M. Докажите, что периметр одного из треугольников ABM и ACM равен 2.

Прислать комментарий     Решение

Задача 116642  (#10.5)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .