|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Бумажный треугольник, один из углов которого равен α, разрезали на несколько треугольников. Могло ли случиться, что все углы всех полученных треугольников меньше α Найдите все целые числа a, для которых число a10 + 1 делится на 10. Длина прямоугольного участка равна 4 метра, а ширина – 1 метр. |
Страница: << 1 2 3 [Всего задач: 15]
В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°.
На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой?
На координатной плоскости задан график функции y = kx + b (см. рисунок). В той же координатной плоскости схематически постройте график функции y = kx² + bx.
Длина прямоугольного участка равна 4 метра, а ширина – 1 метр.
На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?
Страница: << 1 2 3 [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|