|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место. Докажите, что для каждого x такого, что sin x Докажите, что если для чисел p1, p2, q1 и q2 выполнено неравенство
(q1 – q2)² + (p1 – p2)(p1q2 – p2q1) < 0, то квадратные трёхчлены Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ. Длина каждой стороны и каждой не главной диагонали выпуклого шестиугольника не превосходит 1. Докажите, что в этом шестиугольнике найдется главная диагональ, длина которой не превосходит Кубик 3*3*3 нетрудно распилить на 27 кубиков шестью распилами. Можно ли уменьшить число распилов, если разрешается распиливать несколько кусков сразу и перекладывать части? Каждое неотрицательное целое число представимо, причём единственным образом, в виде Произведение квадратных трёхчленов x² + a1x + b1, x² + a2x + b2, ..., x² + anx + bn равно многочлену P(x) = x2n + c1x2n–1 + c2x2n–2 + ... + c2n–1x + c2n, где коэффициенты c1, c2, ..., c2n положительны. Докажите, что для некоторого k (1 ≤ k ≤ n) коэффициенты ak и bk положительны. Стороны синего и зеленого правильных треугольников соответственно параллельны. Периметр синего треугольника равен 4, а периметр зеленого треугольника равен 5. Найдите периметр шестиугольника, полученного в пересечении этих треугольников. а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности. В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 559]
Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 559] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|