ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось АБ×ВГ = ДДЕЕ. Докажите, что он где-то ошибся. Решение |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559]
Найдите наименьшее натуральное значение n, при котором число n! делится на 990.
Может ли n! оканчиваться ровно на пять нулей?
На сколько нулей оканчивается число 100!?
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось АБ×ВГ = ДДЕЕ. Докажите, что он где-то ошибся.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|