Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

Вниз   Решение


Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

ВверхВниз   Решение


Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что  d > 30000.

ВверхВниз   Решение


При каких целых n число  n4 + 4  – составное?

ВверхВниз   Решение


Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n,  n > 1,  положительны?

ВверхВниз   Решение


x ≥ –1, n – натуральное число. Докажите, что   (1 + x)n ≥ 1 + nx.

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


Имеется три кучки камней: в первой – 50, во второй – 60, в третьей – 70. Ход состоит в разбиении каждой кучки, состоящей более чем из одного камня, на две меньшие кучки. Выигрывает тот, после чьего хода во всех кучках будет по одному камню.

ВверхВниз   Решение


Четырехугольник ABCD выпуклый; точки  A1, B1, C1 и D1 таковы, что  AB||C1D1, AC||B1D1 и т. д. для всех пар вершин. Докажите, что четырехугольник  A1B1C1D1 тоже выпуклый, причем  $ \angle$A + $ \angle$C1 = 180o.

ВверхВниз   Решение


Пусть a и n – натуральные числа, большие 1. Докажите, что если число an – 1 простое, то  a = 2  и n – простое.
(Числа вида  q = 2n – 1  называются числами Мерсенна.)

ВверхВниз   Решение


Дан прямоугольный параллелепипед размерами а) 4 × 4 × 4; б) 4 × 4 × 3; в) 4 × 3 × 3, составленный из единичных кубиков. За ход разрешается проткнуть спицей любой ряд, если в нем есть хотя бы один непроткнутый кубик. Проигрывает тот, кто не может сделать ход.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 30448  (#016)

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 6,7,8

Имеются две кучки камней: в одной - 30, в другой - 20. За ход разрешается брать любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.

Прислать комментарий     Решение


Задача 30449  (#017)

Тема:   [ Симметричная стратегия ]
Сложность: 3-
Классы: 6,7,8

На окружности расставлено 20 точек. За ход разрешается соединить любые две из них отрезком, не пересекающим отрезков, проведенных ранее. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30450  (#018)

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8

У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать хода.

Прислать комментарий     Решение


Задача 30451  (#019)

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Дан прямоугольный параллелепипед размерами а) 4 × 4 × 4; б) 4 × 4 × 3; в) 4 × 3 × 3, составленный из единичных кубиков. За ход разрешается проткнуть спицей любой ряд, если в нем есть хотя бы один непроткнутый кубик. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 74569  (#020)

Темы:   [ Симметричная стратегия ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 7,8,9,10

Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .