Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Найдите периметр треугольника ABC, если известны координаты его вершин  A(–3, 5),  B(3, –3)  и точки  M(6, 1),  являющейся серединой стороны BC.

Вниз   Решение


Найдите периметр треугольника KLM, если известны координаты его вершин  K(–4, –3),  L(2, 5)  и точки  P(5, 1),  являющейся серединой стороны LM.

ВверхВниз   Решение


Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?

ВверхВниз   Решение


На отрезке  [0, N]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, N],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, N]?

ВверхВниз   Решение


Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?

ВверхВниз   Решение


Автор: Лифшиц Ю.

На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек, причем никакие три из отмеченных точек не лежат на одной прямой. Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не более четверти суммы площадей всех треугольников с отмеченными вершинами.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD , и проведены биссектрисы lA , lB , lC , lD внешних углов этого четырёхугольника. Прямые lA и lB пересекаются в точке K , прямые lB и lC – в точке L , прямые lC и lD – в точке M , прямые lD и lA – в точке N . Докажите, что если окружности, описанные около треугольников ABK и CDM , касаются внешним образом, то и окружности, описанные около треугольников BCL и DAN , касаются внешним образом.

ВверхВниз   Решение


На одной стороне угла с вершиной O взята точка A, а на другой – точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O1, вписанная в треугольник OAB, и окружность с центром O2, касающаяся стороны AC и продолжений сторон OA и OC треугольника AOC. Докажите, что если  O1A = O2A,  то треугольник ABC равнобедренный.

ВверхВниз   Решение


В угол вписаны две окружности; одна из них касается сторон угла в точках K1 и K2, а другая — в точках L1 и L2. Докажите, что прямая K1L2 высекает на этих двух окружностях равные хорды.

ВверхВниз   Решение


Замостите плоскость одинаковыми пятиугольниками.

ВверхВниз   Решение


Найти такие числа A,B,C,a,b,c , чтобы имело место тождество

(4x-2)/(x3-x)=A/(x-a)+B/(x-b)+C/(x-c).

ВверхВниз   Решение


Решите ребус 250*ЛЕТ+МГУ=2005*ГОД. (Разными буквами обозначены разные цифры, а одинаковыми - одинаковые; при этом некоторыми буквами могут быть обозначены уже имеющиеся цифры 2, 5 и 0.)
а) Найдите хотя бы одно решение ребуса;
б) Докажите, что других решений нет.

ВверхВниз   Решение


Докажите, что медиана разбивает треугольник на два равновеликих треугольника.

ВверхВниз   Решение


Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо.
  а) Сколькими способами она может добраться до крайнего правого поля?
  б) Сколькими способами она может добраться до крайнего правого поля ровно за семь ходов?

Вверх   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 559]      



Задача 30741  (#55 (пункт а))

Темы:   [ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

Прислать комментарий     Решение

Задача 30343  (#56 (пункт б))

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Перебор случаев ]
Сложность: 3-
Классы: 6,7,8

Сколькими способами из полной колоды (52 карты) можно выбрать
  а) 4 карты разных мастей и достоинств?
  б) 6 карт так, чтобы среди них были представители всех четырех мастей?

Прислать комментарий     Решение

Задача 30744  (#058)

Темы:   [ Правило произведения ]
[ Геометрическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 6,7,8

Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?

Прислать комментарий     Решение

Задача 30745  (#059)

Темы:   [ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно разделить колоду из 36 карт пополам так, чтобы в каждой половине было по два туза?

Прислать комментарий     Решение

Задача 30746  (#060)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо.
  а) Сколькими способами она может добраться до крайнего правого поля?
  б) Сколькими способами она может добраться до крайнего правого поля ровно за семь ходов?

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .