|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите все простые числа р, q, r, удовлетворяющие равенству pq + qp = r. Имеется много одинаковых квадратов. В вершинах каждого из них в произвольном порядке написаны числа 1, 2, 3 и 4. Квадраты сложили в стопку и написали сумму чисел, попавших в каждый из четырёх углов стопки. Может ли оказаться
так, что Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек. Найти последнюю цифру числа 71988 + 91988. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 180]
Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?
Докажите справедливость формулы
Существует ли такое натуральное x, что x² + x + 1 делится на 1985?
Число x оканчивается на 5. Доказать, что x² оканчивается на 25.
Найти последнюю цифру числа 71988 + 91988.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 180] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|