|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что уравнение 4k – 4l = 10n не имеет решений в целых числах. В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой. Высота правильной шестиугольной пирамиды равна стороне основания. Найдите угол бокового ребра с плоскостью основания. Доказать, что (2n – 1)n – 3 делится на 2n – 3 при любом n. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Через n!! обозначается произведение n(n – 2)(n – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
Доказать, что при чётном n 20n + 16n – 3n – 1 делится на 323.
Доказать, что (2n – 1)n – 3 делится на 2n – 3 при любом n.
Доказать, что n³ + 5n делится на 6 при любом целом n.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|