ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите следующие неравенства непосредственно и при помощи неравенства Мюрхеда (задача 61424):
  а)  x4y²z + y4x²z + y4z²x + z4y²x + x4z²y + z4x²y ≥ 2(x³y²z² + x²y³z² + x²y²z³);
  б)  x5 + y5 + z5x²y²z + x²yz² + xy²z²;
  в)  x³ + y³ + z³ + t³ ≥ xyz + xyt + xzt + yxt.
Значения переменных считаются положительными.

Вниз   Решение


На отрезке  [0, 2002]  отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

ВверхВниз   Решение


Найти все прямоугольники с натуральными сторонами, у которых периметр равен площади.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 31293  (#21)

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 6,7,8

Решить в целых числах:  1/a + 1/b = 1/cb и c – простые.

Прислать комментарий     Решение

Задача 31294  (#22)

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 6,7,8

Найти все прямоугольники с натуральными сторонами, у которых периметр равен площади.

Прислать комментарий     Решение

Задача 31295  (#23)

Темы:   [ Уравнения в целых числах ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 6,7,8

Есть 100 купюр двух типов: по a и b рублей, причём  a ≠ b (mod 101).
Доказать, что можно выбрать несколько купюр так, что полученная сумма (в рублях) делится на 101.

Прислать комментарий     Решение

Задача 31296  (#24)

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

a) Решить в целых числах уравнение   1/a + 1/b + 1/c = 1.
б)   1/a + 1/b + 1/c < 1  (a, b, c – натуральные числа). Доказать, что   1/a + 1/b + 1/c < 41/42.

Прислать комментарий     Решение

Задача 31297  (#25)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Доказать, что существует бесконечно много натуральных чисел, не представимых в виде  n² + p  (p – простое).

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .