ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны. Существует ли такое значение x, что выполняется равенство arcsin2x + arccos2x = 1? Доказать, что уравнение 19x² – 76y² = 1976 не имеет решений в целых числах. В равнобедренном треугольнике ABC (AB = BC) биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC. Хорды AB, AC и BC окружности равны соответственно 15, 21 и 24. Точка D – середина дуги CB. На какие части BE и EC делится хорда BC прямой AD? На клетчатой плоскости со стороной клетки 1 нарисован круг радиуса 1000. Докажите, что суммарная площадь клеток, целиком лежащих внутри этого круга, составляет не менее 99% площади круга. На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол. На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°. Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE. Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет? Даны точки A и B. Где на прямой AB расположены точки, расстояние от которых до точки B больше, чем до точки A? При организации экспедиции на Эверест участниками было установлено
четыре высотных лагеря (не считая базового), на растоянии дня пути друг
от друга, после чего все спустились вниз. Пересчитав запасы, руководитель
решил, что надо занести еще один баллон кислорода в четвертый лагерь, а
потом всем опять вернуться вниз на отдых. При этом каждый участник
|
Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 644]
В большую шкатулку положили 10 шкатулок поменьше. В каждую из вложенных шкатулок либо положили 10 еще поменьше, либо ничего не положили. В каждую из меньших опять положили или 10, или ни одной, и т.д. После этого оказалось ровно 2006 шкатулок с содержимым. Сколько пустых?
Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика?
В сундуке лежали два колпака белого цвета и три черного. В темную комнату завели трех мудрецов и надели на них какие-то колпаки из сундука. Потом вывели в другую комнату. Они не видят, какого цвета колпак на них, но видят колпакки других. Через некоторое время один из них догадался, какого цвета на нем колпак. Как? Какого цвета был колпак?
При организации экспедиции на Эверест участниками было установлено
четыре высотных лагеря (не считая базового), на растоянии дня пути друг
от друга, после чего все спустились вниз. Пересчитав запасы, руководитель
решил, что надо занести еще один баллон кислорода в четвертый лагерь, а
потом всем опять вернуться вниз на отдых. При этом каждый участник
Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?
Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке