Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

Вниз   Решение


Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей?

ВверхВниз   Решение


Существует ли на плоскости конечный набор различных векторов $ \overrightarrow{a_1}$, $ \overrightarrow{a_2}$, ..., $ \overrightarrow{a_n}$ такой, что для любой пары различных векторов из этого набора найдётся такая другая пара из этого набора, что суммы каждой из пар равны между собой?

ВверхВниз   Решение


Автор: Вялый М.Н.

Последовательность {an} определяется правилами:  a0 = 9,    .
Докажите, что в десятичной записи числа a10 содержится не менее 1000 девяток.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 108056  (#1)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна  ½ AC² sin∠A.

Прислать комментарий     Решение

Задача 98117  (#2)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Автор: Анджанс А.

Можно ли разрезать плоскость на многоугольники, каждый из которых переходит в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см?

Прислать комментарий     Решение

Задача 98118  (#3)

Темы:   [ Числовые таблицы и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
  1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
  2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
  3) среди чисел нет равных;
  4) все числа не больше 1991?

Прислать комментарий     Решение

Задача 35392  (#4)

Темы:   [ Рекуррентные соотношения ]
[ Треугольник Паскаля и бином Ньютона ]
[ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Вялый М.Н.

Последовательность {an} определяется правилами:  a0 = 9,    .
Докажите, что в десятичной записи числа a10 содержится не менее 1000 девяток.

Прислать комментарий     Решение

Задача 98120  (#5)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Повороты на 60 и 120 ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Пусть M – центр тяжести (точка пересечения медиан) треугольника ABC. При повороте на 120° вокруг точки M точка B переходит в точку P, при повороте на 240° вокруг точки M (в том же направлении) точка C переходит в точку Q. Докажите, что либо треугольник APQ – правильный, либо точки A, P, Q совпадают.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .