ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Постройте окружность, проходящую через данную точку A и касающуюся данной прямой в данной точке B.
Царь пообещал награду тому, кто сможет на каменистом пустыре посадить красивый фруктовый сад. Об этом узнали два брата. Старший смог выкопать 18 ям (см. рис. слева). Больше нигде не удалось, только все лопаты сломал. Царь рассердился и посадил его в темницу. Тогда младший брат Иван предложил разместить яблони, груши и сливы в вершинах равных треугольников (см. рис. справа), а остальные ямы засыпать.
На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать? Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.
Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал: — Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение. Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса! Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении? Чему равна максимальная разность между соседними числами из числа тех, сумма цифр которых делится на 7?
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на плоскости три точки, являющиеся вершинами равностороннего треугольника. Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать (процарапывать) окружности, дуги окружностей и делать засечки. Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней. |
Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 7526]
Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.
Сторона основания ABCD правильной пирамиды SABCD равна
1) объём пирамиды CMSK; 2) угол между прямыми CM и SK; 3) расстояние между прямыми CM и SK.
Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?
Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней.
Постройте окружность, проходящую через данную точку A и касающуюся данной прямой в данной точке B.
Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке