Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 7526]
|
|
Сложность: 2+ Классы: 6,7,8
|
Разрежьте фигуру, полученную из прямоугольника 4×5 вырезанием четырёх угловых клеток 1×1, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат.
Какие веса могут иметь три гири для того, чтобы с их помощью можно было взвесить любое целое число килограммов от 1 до 10 на чашечных весах (гири можно ставить на обе чашки)? Приведите пример.
Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
(n чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину n², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в следующем положении и т. д. После снятия трафарета на листе бумаги оказывается зашифрованное сообщение.
Найдите число различных ключей для произвольного чётного числа n.
Замостите плоскость одинаковыми пятиугольниками.
|
|
Сложность: 2+ Классы: 5,6,7
|
У весов сдвинута стрелка. Когда на весы положили одну связку бананов, весы показали 1,5 кг. Когда на весы положили связку бананов побольше, весы показали
2,5 кг. Когда взвесили сразу обе связки бананов, весы показали 3,5 кг. Сколько на самом деле весили связки бананов?
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 7526]