|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдите расстояние от центра окружности радиуса 10 до хорды, равной 12. Три окружности радиуса R проходят через точку H; A, B и C — точки их попарного пересечения, отличные от H. Докажите, что: а) H — точка пересечения высот треугольника ABC; б) радиус описанной окружности треугольника ABC тоже равен R. В треугольнике ABC сторона c наибольшая, а a наименьшая. Докажите, что lc Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника. |
Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 6702]
В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная, пересекающая две бóльшие стороны.
Три окружности разных радиусов попарно касаются друг друга внешним образом. Отрезки, соединяющие их центры, образуют прямоугольный треугольник. Найдите радиус меньшей окружности, если радиусы большей и средней равны 6 и 4.
Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 6702] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|