|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дана клетчатая доска размерами а) 9 × 10; б) 10 × 12; в) 9 × 11. За ход разрешается вычеркнуть любую горизонталь или любую вертикаль, если в ней к моменту хода есть хотя бы одна невычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Сумма двух противоположных сторон описанного четырёхугольника равна 20, а радиус вписанной окружности равен 4. Найдите площадь четырёхугольника.
|
Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 7526]
Около круга описана трапеция, периметр которой равен 12. Найдите среднюю линию трапеции.
Докажите, что у четырёхугольника, описанного около окружности, суммы противоположных сторон равны.
Сумма двух противоположных сторон описанного четырёхугольника равна 20, а радиус вписанной окружности равен 4. Найдите площадь четырёхугольника.
Каждая из трёх окружностей радиуса r касается двух других. Найдите площадь треугольника, образованного общими внешними касательными к этим окружностям.
Каждая из трёх окружностей радиуса r касается двух других. Найдите площадь фигуры, расположенной вне окружностей и ограниченной их дугами, заключёнными между точками касания.
Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|