ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Напишите в строку пять чисел, чтобы сумма каждых двух соседних чисел была отрицательна, а сумма всех чисел – положительна. На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)? Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру. Замените в выражении ABC = DEF буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз. Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается извне третьей окружности радиуса R в точках A и B соответственно. Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что ∠AOD = 3∠ACD. Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды. |
Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 6702]
Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что C2B2 || AC.
Основание H высоты CH прямоугольного треугольника ABC
соединили с серединами M и N катетов AC и BC.
Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.
Хорда, перпендикулярная диаметру окружности, делит его в отношении 1 : 3. Под какими углами видна хорда из концов этого диаметра?
Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах равные отрезки.
Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке