ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть ABCD – выпуклый четырехугольник. Докажите, что AB + CD < AC + BD. Решение |
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 6702]
Пусть ABCD – выпуклый четырехугольник. Докажите, что AB + CD < AC + BD.
В равнобедренном треугольнике ABC на продолжении основания BC за точку C взята точка D. Докажите, что угол ABC больше угла ADC.
Докажите, что любая хорда окружности не больше диаметра и равна ему только тогда, когда сама является диаметром.
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 6702] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|