Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол α . Найдите радиус описанного шара.

Вниз   Решение


Высота параллелограмма, проведённая из вершины тупого угла, равна 2 и делит сторону параллелограмма пополам. Острый угол параллелограмма равен 30°. Найдите диагональ, проведённую из вершины тупого угла, и углы, которые она образует со сторонами.

ВверхВниз   Решение


Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.

ВверхВниз   Решение


Сеня не умеет писать некоторые буквы и всегда в них ошибается. В слове ТЕТРАЭДР он сделал бы пять ошибок, в слове ДОДЕКАЭДР – шесть, а в слове ИКОСАЭДР – семь. А сколько ошибок он сделает в слове ОКТАЭДР?

ВверхВниз   Решение


В ребусе ЯЕМЗМЕЯ = 2020 замените каждую букву в левой части равенства цифрой или знаком арифметического действия (одинаковые буквы одинаково, разные – по-разному) так, чтобы получилось верное равенство. Достаточно привести один пример, пояснений не требуется.

ВверхВниз   Решение


Окружность проходит через вершины A и C треугольника ABC , пересекая сторону AB в точке E и сторону BC в точке F . Угол AEC в 5 раз больше угла BAF , а угол ABC равен 72o . Найдите радиус окружности, если AC = 6 .

ВверхВниз   Решение


Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.

Вверх   Решение

Задачи

Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 6702]      



Задача 55631

Темы:   [ Центральная симметрия ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Прислать комментарий     Решение

Задача 55691

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.
Прислать комментарий     Решение


Задача 55715

Темы:   [ Поворот (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.

Прислать комментарий     Решение

Задача 55716

Темы:   [ Поворот (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что при повороте окружность переходит в окружность.

Прислать комментарий     Решение


Задача 86102

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9,10

Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

Прислать комментарий     Решение

Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .