Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Найти все значения x, y и z, удовлетворяющие равенству $\sqrt{x-y+z} = \sqrt{x} - \sqrt{y} + \sqrt{z}$.

Вниз   Решение


В треугольнике ABC известно, что $ \angle$BAC = $ \alpha$, $ \angle$ABC = $ \beta$, BC = a, AD — высота. На стороне AB взята точка P, причём $ {\frac{AP}{PB}}$ = $ {\frac{1}{2}}$. Через точку P проведена окружность, касающаяся стороны BC в точке D. Найдите радиус этой окружности.

ВверхВниз   Решение


а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

ВверхВниз   Решение


Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.

ВверхВниз   Решение


На стороне BC треугольника BCD взята точка A, причём BA = AC, $ \angle$CDB = $ \alpha$, $ \angle$BCD = $ \beta$, BD = b; CE — высота треугольника BCD. Окружность проходит через точку A и касается стороны BD в точке E. Найдите радиус этой окружности.

ВверхВниз   Решение


Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер  a, b, c  этого куба.

ВверхВниз   Решение


На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Докажите, что  SABCD ≥ 3SBCM.

ВверхВниз   Решение


Окружность касается двух сторон треугольника и двух его медиан. Докажите, что этот треугольник равнобедренный.

ВверхВниз   Решение


Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

ВверхВниз   Решение


Отрезок BE разбивает треугольник ABC на два подобных треугольника, причём коэффициент подобия равен    Найдите углы треугольника ABC.

ВверхВниз   Решение


Автор: Бибиков П.

В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности.

ВверхВниз   Решение


Основания трапеции равны a и b  (a > b).  Найдите длину отрезка, соединяющего середины диагоналей трапеции.

ВверхВниз   Решение


На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

ВверхВниз   Решение


Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

ВверхВниз   Решение


На окружности даны четыре точки A, B, C, D. Через каждую пару соседних точек проведена окружность. Вторые точки пересечения соседних окружностей обозначим через A1, B1, C1, D1. (Некоторые из них могут совпадать с прежними.) Доказать, что A1, B1, C1, D1 лежат на одной окружности.

ВверхВниз   Решение


Дан ромб ABCD. Окружность радиуса R касается прямых AB и AD в точках B и D соответственно и пересекает сторону BC в точке L, причём 4BL = BC. Найдите площадь ромба.

ВверхВниз   Решение


В трапеции ABCD известно, что  AB = a,  BC = b  (a ≠ b).  Определите, что пересекает биссектриса угла A: основание BC или боковую сторону CD?

ВверхВниз   Решение


Автор: Коганов И.

В Швамбрании N городов, каждые два соединены дорогой. При этом дороги сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над другой). Злой волшебник устанавливает на всех дорогах одностороннее движение таким образом, что если из города можно выехать, то в него нельзя вернуться. Доказать, что
  а) волшебник может это сделать;
  б) найдётся город, из которого можно добраться до всех, и найдётся город, из которого нельзя выехать;
  в) существует единственный путь, обходящий все города;
  г) волшебник может осуществить своё намерение N! способами.

ВверхВниз   Решение


Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.

ВверхВниз   Решение


В трапецию ABCD  (BC || AD)  вписана окружность, касающаяся боковых сторон AB и CD в точках K и L соответственно, а оснований AD и BC в точках M и N.
  а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что  KQ || AD.
  б) Докажите, что  AK·KB = CL·LD.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 56485

Темы:   [ Вписанные и описанные окружности ]
[ Признаки подобия ]
[ Три точки, лежащие на одной прямой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 9

Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что  BK·AB = BO²  и
AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 53868

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

Прислать комментарий     Решение

Задача 53869

Темы:   [ Подобные треугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Отрезок BE разбивает треугольник ABC на два подобных треугольника, причём коэффициент подобия равен    Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 56476

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 9

В трапецию ABCD  (BC || AD)  вписана окружность, касающаяся боковых сторон AB и CD в точках K и L соответственно, а оснований AD и BC в точках M и N.
  а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что  KQ || AD.
  б) Докажите, что  AK·KB = CL·LD.

Прислать комментарий     Решение

Задача 56477

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 9

На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .