Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что  ha/la $ \geq$ $ \sqrt{2r/R}$.

Вниз   Решение


В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

ВверхВниз   Решение


Окружность, построенная на высоте AD прямоугольного треугольника ABC как на диаметре, пересекает катет AB в точке K, а катет AC — в точке M. Отрезок KM пересекает высоту AD в точке L. Известно, что отрезки AK, AL и AM составляют геометрическую прогрессию (т.е. $ {\frac{AK}{AL}}$ = $ {\frac{AL}{AM}}$). Найдите острые углы треугольника ABC.

ВверхВниз   Решение


Докажите, что среди всех треугольников ABC с фиксированным углом $ \alpha$ и полупериметром p наибольшую площадь имеет равнобедренный треугольник с основанием BC.

ВверхВниз   Решение


Докажите неравенства:
  а)   n(x1 + ... + xn) ≥ ( + ... +
  б)   + ... + ;
  в)  

  г)     (неравенство Минковского).
  Значения переменных считаются положительными.

ВверхВниз   Решение


Для каких значений x выполняется неравенство  

ВверхВниз   Решение


Дан треугольник ABC. Постройте две прямые x и y так, чтобы для любой точки M на стороне AC сумма длин отрезков MXM и MYM, проведенных из точки M параллельно прямым x и y до пересечения со сторонами AB и BC треугольника, равнялась 1.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56517

Тема:   [ Подобные фигуры ]
Сложность: 3
Классы: 9

Дан треугольник ABC. Постройте две прямые x и y так, чтобы для любой точки M на стороне AC сумма длин отрезков MXM и MYM, проведенных из точки M параллельно прямым x и y до пересечения со сторонами AB и BC треугольника, равнялась 1.
Прислать комментарий     Решение


Задача 56518

Тема:   [ Подобные фигуры ]
Сложность: 3
Классы: 9

В равнобедренном треугольнике ABC из середины H основания BC опущен перпендикуляр HE на боковую сторону AC; O — середина отрезка HE. Докажите, что прямые AO и BE перпендикулярны.
Прислать комментарий     Решение


Задача 53301

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В треугольник вписана окружность радиуса r. Касательные к этой окружности, параллельные сторонам треугольника, отсекают от него три маленьких треугольника. Пусть r1, r2, r3 – радиусы вписанных в эти треугольники окружностей. Докажите, что  r1 + r2 + r3 = r.

Прислать комментарий     Решение

Задача 56519

Тема:   [ Подобные фигуры ]
Сложность: 4
Классы: 9

Докажите, что проекции основания высоты треугольника на стороны, ее заключающие, и на две другие высоты лежат на одной прямой.
Прислать комментарий     Решение


Задача 56520

Тема:   [ Подобные фигуры ]
Сложность: 4
Классы: 9

На отрезке AC взята точка B и на отрезках AB, BC, CA построены полуокружности S1, S2, S3 по одну сторону от AC. D — такая точка на S3, что BD $ \perp$ AC. Общая касательная к S1 и S2, касается этих полуокружностей в точках F и E соответственно.
а) Докажите, что прямая EF параллельна касательной к S3, проведенной через точку D.
б) Докажите, что BFDE — прямоугольник.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .