Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

Вниз   Решение


Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?

ВверхВниз   Решение


В треугольник вписана окружность. Около неё описан квадрат. Докажите, что вне треугольника лежит меньше половины периметра квадрата.

ВверхВниз   Решение


Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1?

ВверхВниз   Решение


Двое по очереди ставят слонов в клетки шахматной доски так, чтобы слоны не били друг друга. (Цвет слонов значения не имеет). Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники.
Докажите, что в этом многоугольнике найдутся две равные стороны.

ВверхВниз   Решение


Числа a0, a1,..., an,... определены следующим образом:

a0 = 2,    a1 = 3,        an + 1 = 3an - 2an - 1        (n $\displaystyle \geqslant$ 2).

Найдите и докажите формулу для этих чисел.

ВверхВниз   Решение


Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что  DE || AC.  Точки P и Q на меньшей дуге AC окружности ω таковы, что  DP || EQ.  Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что  ∠XBY + ∠PBQ = 180°.

ВверхВниз   Решение



В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.

ВверхВниз   Решение


Окружность S1 касается сторон угла ABC в точках A и C. Окружность S2 касается прямой AC в точке C и проходит через точку B, окружность S1 она пересекает в точке M. Докажите, что прямая AM делит отрезок BC пополам.

ВверхВниз   Решение


Дан выпуклый многоугольник A1...An. Докажите, что описанная окружность некоторого треугольника AiAi + 1Ai + 2 содержит весь многоугольник.

ВверхВниз   Решение


Две окружности касаются внутренним образом в точке M. Пусть AB — хорда большей окружности, касающаяся меньшей окружности в точке T. Докажите, что MT — биссектриса угла AMB.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 56563

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и P. Через точку A проведена касательная AB к окружности S1, а через точку P — прямая CD, параллельная AB (точки B и C лежат на S2, точка D — на S1). Докажите, что ABCD — параллелограмм.
Прислать комментарий     Решение


Задача 56568

Тема:   [ Угол между касательной и хордой ]
Сложность: 4
Классы: 8

Две окружности касаются внутренним образом в точке M. Пусть AB — хорда большей окружности, касающаяся меньшей окружности в точке T. Докажите, что MT — биссектриса угла AMB.
Прислать комментарий     Решение


Задача 56569

Тема:   [ Угол между касательной и хордой ]
Сложность: 4
Классы: 8

Через точку M, лежащую внутри окружности S, проведена хорда AB; из точки M опущены перпендикуляры MP и MQ на касательные, проходящие через точки A и B. Докажите, что величина 1/PM + 1/QM не зависит от выбора хорды, проходящей через точку M.
Прислать комментарий     Решение


Задача 56570

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

Окружность S1 касается сторон угла ABC в точках A и C. Окружность S2 касается прямой AC в точке C и проходит через точку B, окружность S1 она пересекает в точке M. Докажите, что прямая AM делит отрезок BC пополам.
Прислать комментарий     Решение


Задача 56571

Тема:   [ Угол между касательной и хордой ]
Сложность: 4
Классы: 8

Окружность S касается окружностей S1 и S2 в точках A1 и A2B — точка окружности S, а K1 и K2 — вторые точки пересечения прямых A1B и A2B с окружностями S1 и S2. Докажите, что если прямая K1K2 касается окружности S1, то она касается и окружности S2.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .