|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей, Некоторые из 20 металлических кубиков, одинаковых по размерам и внешнему виду, алюминиевые, остальные (Предполагается, что все кубики могут быть алюминиевыми, но они не могут быть все дюралевыми (если все кубики окажутся одного веса, то нельзя выяснить, алюминиевые они или дюралевые) — прим. ред.) дюралевые (более тяжёлые). Как при помощи 11 взвешиваний на весах с 2-мя чашечками без гирь определить число дюралевых кубиков? Существует ли 1000000 таких различных натуральных чисел, что никакая сумма нескольких из этих чисел не является полным квадратом? Докажите, что произведение 99 дробей Даны две треугольные пирамиды ABCD и A'BCD с общим основанием BCD, причем точка A' лежит внутри пирамиды ABCD. Доказать, что сумма плоских углов при вершине A' пирамиды A'BCD больше суммы плоских углов при вершине A пирамиды ABCD. На сторонах AC и BC треугольника ABC внешним образом построены квадраты ACA1A2 и BCB1B2. Докажите, что прямые A1B, A2B2 и AB1 пересекаются в одной точке. |
Страница: << 15 16 17 18 19 20 21 [Всего задач: 104]
б) Докажите, что окружность, проходящая через вершины B и C любого треугольника ABC и центр O его вписанной окружности, высекает на прямых AB и AC равные хорды.
Страница: << 15 16 17 18 19 20 21 [Всего задач: 104] |
||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|