ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

Вниз   Решение


Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

ВверхВниз   Решение


Даны диаметр AB окружности и точка C, не лежащая на прямой AB. С помощью одной линейки (без циркуля) опустите перпендикуляр из точки C на AB, если: а) точка C не лежит на окружности; б) точка C лежит на окружности.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 56691

Тема:   [ Применение теоремы о высотах треугольника ]
Сложность: 3
Классы: 8,9

Точки C и D лежат на окружности с диаметром AB. Прямые AC и BDAD и BC пересекаются в точках P и Q. Докажите, что  AB $ \perp$ PQ.
Прислать комментарий     Решение


Задача 56692

Тема:   [ Применение теоремы о высотах треугольника ]
Сложность: 5
Классы: 8,9

Прямые PC и PD касаются окружности с диаметром AB (C и D — точки касания). Докажите, что прямая, соединяющая P с точкой пересечения прямых AC и BD, перпендикулярна AB.
Прислать комментарий     Решение


Задача 56693

Тема:   [ Применение теоремы о высотах треугольника ]
Сложность: 5
Классы: 8,9

Даны диаметр AB окружности и точка C, не лежащая на прямой AB. С помощью одной линейки (без циркуля) опустите перпендикуляр из точки C на AB, если: а) точка C не лежит на окружности; б) точка C лежит на окружности.
Прислать комментарий     Решение


Задача 56694

Тема:   [ Применение теоремы о высотах треугольника ]
Сложность: 5
Классы: 8,9

Пусть Oa, Ob и Oc — центры описанных окружностей треугольников PBC, PCA и PAB. Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .