|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Вокруг правильного семиугольника описали окружность и вписали в него окружность. То же проделали с правильным 17-угольником. В результате каждый из многоугольников оказался расположенным в своем круговом кольце. Оказалось, что площади этих колец одинаковы. Докажите, что стороны многоугольников одинаковы. Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных? Окружности S1 и S2, S2 и S3, S3 и S4, S4 и S1 касаются внешним образом. Докажите, что четыре общие касательные (в точках касания окружностей) либо пересекаются в одной точке, либо касаются одной окружности. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]
а) Докажите, что если три из четырехугольников, примыкающих к вершинам A, B, C, D, описанные, то четвертый четырехугольник тоже описанный. б) Докажите, что если ra, rb, rc, rd — радиусы окружностей, вписанных в четырехугольники, примыкающие к вершинам A, B, C, D, то
Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110] |
||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|