ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четыре прямые задают четыре треугольника. Докажите, что ортоцентры этих треугольников лежат на одной прямой.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 110]      



Задача 57040  (#06.029)

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Окружность радиуса r1 касается сторон DA, AB и BC выпуклого четырехугольника ABCD, окружность радиуса r2 — сторон AB, BC и CD; аналогично определяются r3 и r4. Докажите, что  $ {\frac{AB}{r_1}}$ + $ {\frac{CD}{r_3}}$ = $ {\frac{BC}{r_2}}$ + $ {\frac{AD}{r_4}}$.
Прислать комментарий     Решение


Задача 57041  (#06.030)

Тема:   [ Четырехугольники (прочее) ]
Сложность: 6
Классы: 9

О выпуклом четырехугольнике ABCD известно, что радиусы окружностей, вписанных в треугольники  ABC, BCD, CDA и DAB, равны между собой. Докажите, что ABCD — прямоугольник.
Прислать комментарий     Решение


Задача 57042  (#06.031)

Тема:   [ Четырехугольники (прочее) ]
Сложность: 6
Классы: 9

Дан выпуклый четырехугольник ABCD A1, B1, C1 и D1 — центры описанных окружностей треугольников  BCD, CDA, DAB и ABC. Аналогично для четырехугольника  A1B1C1D1 определяются точки  A2, B2, C2 и D2. Докажите, что четырехугольники ABCD и  A2B2C2D2 подобны, причем коэффициент их подобия равен  |(ctgA + ctgC)(ctgB + ctgD)/4|.
Прислать комментарий     Решение


Задача 57043  (#06.032)

Тема:   [ Четырехугольники (прочее) ]
Сложность: 6
Классы: 9

Окружности, диаметрами которых служат стороны AB и CD выпуклого четырехугольника ABCD, касаются сторон CD и AB соответственно. Докажите, что BC| AD.
Прислать комментарий     Решение


Задача 57044  (#06.033)

Тема:   [ Четырехугольники (прочее) ]
Сложность: 6+
Классы: 9

Четыре прямые задают четыре треугольника. Докажите, что ортоцентры этих треугольников лежат на одной прямой.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .