Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Все клетки верхнего ряда квадрата 14× 14 заполнены водой, а в одной клетке лежит мешок с песком (см. рис.). За один ход Вася может положить мешки с песком в любые 3 не занятые водой клетки, после чего вода заполняет каждую из тех клеток, которые граничат с водой (по стороне), если в этой клетке нет мешка с песком. Ходы продолжаются, пока вода может заполнять новые клетки. Как действовать Васе, чтобы в итоге вода заполнила как можно меньше клеток?

Вниз   Решение


Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC.

ВверхВниз   Решение


Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.

ВверхВниз   Решение


Вписанный n-угольник  (n > 3)  разбит непересекающимися (во внутренних точках) диагоналями на треугольники. Каждый из получившихся треугольников подобен хотя бы одному из остальных. При каких n возможна описанная ситуация?

ВверхВниз   Решение


Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.

ВверхВниз   Решение


Использовав каждую из цифр от 0 до 9 ровно по разу, запишите 5 ненулевых чисел так, чтобы каждое делилось на предыдущее.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?

ВверхВниз   Решение


Точки M и N таковы, что  AM : BM : CM = AN : BN : CN. Докажите, что прямая MN проходит через центр O описанной окружности треугольника ABC.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 57177

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4+
Классы: 9

Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.
Прислать комментарий     Решение


Задача 57178

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 5
Классы: 9

Прямая l пересекает две окружности в четырех точках. Докажите, что четырехугольник, образованный касательными в этих точках, описанный, причем центр его описанной окружности лежит на прямой, соединяющей центры данных окружностей.
Прислать комментарий     Решение


Задача 57179

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 5
Классы: 9

Точки M и N таковы, что  AM : BM : CM = AN : BN : CN. Докажите, что прямая MN проходит через центр O описанной окружности треугольника ABC.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .