Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Вниз   Решение


Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
  а) Найдите вероятность того, что при очередной замене придётся поменять ровно 4 фонаря.
  б) Найдите математическое ожидание числа фонарей, которые придётся поменять при очередной замене.

ВверхВниз   Решение


В остроугольном треугольнике ABC  AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что
  а) сумма диаметров этих окружностей равна стороне BC.

  б)  

ВверхВниз   Решение


Правильный (4k+2)-угольник вписан в окружность радиуса R с центром O.
Докажите, что сумма длин отрезков, высекаемых углом   AkOAk+1 на прямых   A1A2k, A2A2k–1, ..., AkAk+1,  равна R.

ВверхВниз   Решение


Пусть p – простое число. Докажите, что  (a + b)pap + bp (mod p)  для любых целых a и b.

ВверхВниз   Решение


Докажите, что если на плоскости даны какая-нибудь окружность S и ее центр O, то с помощью одной линейки можно:
а) из любой точки провести прямую, параллельную данной прямой, и опустить на данную прямую перпендикуляр;
б) на данной прямой от данной точки отложить отрезок, равный данному отрезку;
в) построить отрезок длиной ab/c, где a, b, c — длины данных отрезков;
г) построить точки пересечения данной прямой l с окружностью, центр которой — данная точка A, а радиус равен длине данного отрезка;
д) построить точки пересечения двух окружностей, центры которых — данные точки, а радиусы — данные отрезки.

ВверхВниз   Решение


Докажите, что при нечётном  n > 1  справедливо равенство  

ВверхВниз   Решение


Решить в целых числах уравнение  x² + y² = x + y + 2.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  CH – высота, проведённая к гипотенузе. Окружность с центром H и радиусом CH пересекает больший катет AC в точке M. Точка B' симметрична точке B относительно H. В точке B' восставлен перпендикуляр к гипотенузе, который пересекает окружность в точке K. Докажите, что:
  а)  B'M || BC;
  б)  AK – касательная к окружности.

ВверхВниз   Решение


Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

ВверхВниз   Решение


Дан треугольник ABC. С помощью двусторонней линейки, проведя не более восьми линий, постройте на стороне AB такую точку D, что
AD : BD = BC : AC.

ВверхВниз   Решение


Даны точки A и B, расстояние между которыми больше 1 м. С помощью одной лишь линейки, длина которой равна 10 см, постройте отрезок AB. (Линейкой можно только проводить прямые линии.)

ВверхВниз   Решение


Даны диаметр AB окружности и точка C на нем. Постройте на этой окружности точки X и Y, симметричные относительно прямой AB, так, чтобы прямые AX и YC были перпендикулярными.

Вверх   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 101]      



Задача 57265  (#08.067)

Тема:   [ Построения (прочее) ]
Сложность: 5
Классы: 8,9

Даны диаметр AB окружности и точка C на нем. Постройте на этой окружности точки X и Y, симметричные относительно прямой AB, так, чтобы прямые AX и YC были перпендикулярными.
Прислать комментарий     Решение


Задача 54646  (#08.068)

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ НОД и НОК. Взаимная простота ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Дан угол, равный 19°. Разделите его на 19 равных частей с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 57267  (#08.069)

Тема:   [ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что угол величиной no, где n — целое число, не делящееся на 3, можно разделить на n равных частей с помощью циркуля и линейки.
Прислать комментарий     Решение


Задача 57268  (#08.070)

Тема:   [ Необычные построения (прочее) ]
Сложность: 5
Классы: 8,9

На клочке бумаги нарисованы две прямые, образующие угол, вершина которого лежит вне этого клочка. С помощью циркуля и линейки проведите ту часть биссектрисы угла, которая лежит на клочке бумаги.
Прислать комментарий     Решение


Задача 57269  (#08.071)

Тема:   [ Необычные построения (прочее) ]
Сложность: 5
Классы: 8,9

С помощью двусторонней линейки постройте центр данной окружности, диаметр которой больше ширины линейки.
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .