Версия для печати
Убрать все задачи
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
а) треугольник T1 был остроугольным?
б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
в) треугольник T3 был подобен треугольнику T?
г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.

Решение
Квадратная доска разделена на n² прямоугольных клеток n – 1 горизонтальными и n – 1 вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.


Решение
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина
палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя
повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?


Решение
Пусть
ABCD — выпуклый четырехугольник, причем
AB +
BD
AC +
CD. Докажите, что
AB <
AC.

Решение