Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.

Вниз   Решение


Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.

ВверхВниз   Решение


Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

ВверхВниз   Решение


Автор: Фомин С.В.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

ВверхВниз   Решение


Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

ВверхВниз   Решение


Найдите все натуральные числа, не представимые в виде разности квадратов каких-либо натуральных чисел.

ВверхВниз   Решение


На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.

ВверхВниз   Решение


Пусть ABCD — выпуклый четырехугольник, причем  AB + BD $ \leq$ AC + CD. Докажите, что AB < AC.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 55162

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Неравенство треугольника ]
Сложность: 3-
Классы: 8,9

Пусть ABCD – выпуклый четырехугольник. Докажите, что  AB + CD < AC + BD.

Прислать комментарий     Решение

Задача 57319

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 8

Пусть ABCD — выпуклый четырехугольник, причем  AB + BD $ \leq$ AC + CD. Докажите, что AB < AC.
Прислать комментарий     Решение


Задача 57324

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Средние величины ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10

Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.

Прислать комментарий     Решение

Задача 57320

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 4+
Классы: 8

Внутри выпуклого четырехугольника с суммой длин диагоналей d расположен выпуклый четырехугольник с суммой длин диагоналей d'. Докажите, что d' < 2d.
Прислать комментарий     Решение


Задача 57321

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5
Классы: 8

Дана замкнутая ломаная, причем любая другая замкнутая ломаная с теми же вершинами имеет большую длину. Докажите, что эта ломаная несамопересекающаяся.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .