ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



Задача 57414  (#10.006)

Темы:   [ Неравенства с медианами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 5
Классы: 8,9,10

Докажите, что  | a2 - b2|/(2c) < mc $ \leq$ (a2 + b2)/(2c).
Прислать комментарий     Решение


Задача 57415  (#10.007)

Тема:   [ Неравенства с медианами ]
Сложность: 6
Классы: 8,9

Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.
Прислать комментарий     Решение


Задача 57416  (#10.008)

Тема:   [ Неравенства с высотами ]
Сложность: 2
Классы: 8,9

Докажите, что в любом треугольнике сумма длин высот меньше периметра.
Прислать комментарий     Решение


Задача 57417  (#10.009)

Тема:   [ Неравенства с высотами ]
Сложность: 2+
Классы: 8,9

Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.
Прислать комментарий     Решение


Задача 57418  (#10.010)

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .