Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что геометрическая прогрессия {an} = bx0n удовлетворяет соотношению (11.2 ) тогда и только тогда, когда x0 -- корень характеристического уравнения (11.3 ) последовательности {an}.

Вниз   Решение


На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.

ВверхВниз   Решение


Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.

ВверхВниз   Решение


Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


В треугольнике ABC проведены медиана CM и высота CH. Прямые, проведенные через произвольную точку P плоскости перпендикулярно CA, CM и CB, пересекают прямую CH в точках A1, M1 и B1. Докажите, что A1M1 = B1M1.

ВверхВниз   Решение


Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

ВверхВниз   Решение


В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



Задача 57414  (#10.006)

Темы:   [ Неравенства с медианами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 5
Классы: 8,9,10

Докажите, что  | a2 - b2|/(2c) < mc $ \leq$ (a2 + b2)/(2c).
Прислать комментарий     Решение


Задача 57415  (#10.007)

Тема:   [ Неравенства с медианами ]
Сложность: 6
Классы: 8,9

Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.
Прислать комментарий     Решение


Задача 57416  (#10.008)

Тема:   [ Неравенства с высотами ]
Сложность: 2
Классы: 8,9

Докажите, что в любом треугольнике сумма длин высот меньше периметра.
Прислать комментарий     Решение


Задача 57417  (#10.009)

Тема:   [ Неравенства с высотами ]
Сложность: 2+
Классы: 8,9

Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.
Прислать комментарий     Решение


Задача 57418  (#10.010)

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .