ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два треугольника ABC и A1B1C1. Известно, что
прямые AA1, BB1 и CC1 пересекаются в одной точке O,
прямые AA1, BC1 и CB1 пересекаются в одной точке O1
и прямые AC1, BB1 и CA1 пересекаются в одной точке O2.
Докажите, что прямые AB1, BA1 и CC1 тоже пересекаются
в одной точке O3 (теорема о трижды перспективных треугольниках).
Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток. Две окружности, пересекающиеся в точке A, касаются окружности (или
прямой) S1 в точках B1 и C1, а окружности (или прямой) S2
в точках B2 и C2 (причем касание в B2 и C2 такое же,
как в B1 и C1). Докажите, что окружности, описанные вокруг
треугольников AB1C1 и AB2C2, касаются друг друга.
Существует ли треугольник, у которого все высоты
меньше 1 см, а площадь больше 1
м2?
Докажите, что
la |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]
Пусть
a
Докажите, что
la
Докажите, что
ha/la
Докажите, что: а)
la2 + lb2 + lc2
Докажите, что
lalblc
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке