ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC с основанием BC угол при вершине A равен 80°. Внутри треугольника ABC взята точка M так, что
MBC = 30°  и  ∠MCB = 10°.  Найдите величину угла AMC.

Вниз   Решение


При помощи формулы Лежандра (см. задачу 60553) докажите, что число      целое.

ВверхВниз   Решение


  а) Пусть  {a1, a2,..., an}  – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов
{a1, a2, ..., an},  {a2, ..., an, a1},  ...,  {an, a1, ..., an–1}  все частичные суммы (от начала до произвольного элемента) положительны.

  б) Выведите отсюда равенства:      где  (4n – 2)!!!! = 2·6·10·...(4n – 2)  – произведение, в котором участвует каждое четвёртое число.
  Определение чисел Каталана Cn смотри в справочнике.

ВверхВниз   Решение


Пусть     – производящая функция последовательности чисел Каталана. Докажите, что она удовлетворяет равенству

C(x) = xC²(x) + 1,
и получите явный вид функции C(x).
Определение чисел Каталана можно найти в справочнике.

ВверхВниз   Решение


Выведите формулу для чисел Каталана, воспользовавшись результатом задачи 61519 и равенством     где
  – обобщенные биномиальные коэффициенты.
Определение чисел Каталана можно найти в справочнике.

ВверхВниз   Решение


В равнобедренном треугольнике ABC с основанием AC угол при вершине B равен  20o. На сторонах BC и AB взяты точки D и E соответственно так, что  $ \angle$DAC = 60o и  $ \angle$ECA = 50o. Найдите угол ADE.

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса BE и на стороне BC взята точка K так, что  $ \angle$AKB = 2$ \angle$AEB. Найдите величину угла AKE, если  $ \angle$AEB = $ \alpha$.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 57638  (#12.055)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В прямоугольном треугольнике ABC с прямым углом A на высоте AD как на диаметре построена окружность, пересекающая сторону AB в точке K и сторону AC в точке M. Отрезки AD и KM пересекаются в точке L. Найдите острые углы треугольника ABC, если известно, что  AK : AL = AL : AM.
Прислать комментарий     Решение


Задача 57639  (#12.056)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В треугольнике ABC угол C вдвое больше угла A и b = 2a. Найдите углы этого треугольника.
Прислать комментарий     Решение


Задача 57640  (#12.057)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В треугольнике ABC проведена биссектриса BE и на стороне BC взята точка K так, что  $ \angle$AKB = 2$ \angle$AEB. Найдите величину угла AKE, если  $ \angle$AEB = $ \alpha$.
Прислать комментарий     Решение


Задача 57641  (#12.058)

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Частные случаи треугольников (прочее) ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 9,10,11

В равнобедренном треугольнике ABC с основанием BC угол при вершине A равен 80°. Внутри треугольника ABC взята точка M так, что
MBC = 30°  и  ∠MCB = 10°.  Найдите величину угла AMC.

Прислать комментарий     Решение

Задача 57642  (#12.059)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 5+
Классы: 9

В равнобедренном треугольнике ABC с основанием AC угол при вершине B равен  20o. На сторонах BC и AB взяты точки D и E соответственно так, что  $ \angle$DAC = 60o и  $ \angle$ECA = 50o. Найдите угол ADE.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .