Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну?

Вниз   Решение


Диаметр PQ и перпендикулярная ему хорда RS пересекаются в точке A. Точка C лежит на окружности, а точка B — внутри окружности, причем  BC || PQ и BC = RA. Из точек A и B опущены перпендикуляры AK и BL на прямую CQ. Докажите, что  SACK = SBCL.

ВверхВниз   Решение


Пусть на двух пересекающихся прямых l1 и l2 выбраны точки M1 и M2, не совпадающие с точкой пересечения M этих прямых. Поставим в соответствие им окружность, проходящую через M1, M2 и M.
Если (l1, M1), (l2, M2), (l3, M3) — прямые с выбранными точками в общем положении, то согласно задаче 2.80, а) три окружности, соответствующие парам (l1, M1) и (l2, M2), (l2, M2) и (l3, M3), (l3, M3) и (l1, M1), пересекаются в одной точке, которую мы поставим в соответствие тройке прямых с точками.
а) Пусть l1, l2, l3, l4 — четыре прямые общего положения, на каждой из которых задано по точке, причем эти точки лежат на одной окружности. Докажите, что четыре точки, соответствующие тройкам, получаемым отбрасыванием одной из прямых, лежат на одной окружности.
б) Докажите, что каждому набору из n прямых общего положения с заданными на них точками, лежащими на одной окружности, можно поставить в соответствие точку (при нечетном n) или окружность (при четном n) так, что n окружностей (точек при четном n), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности при четном n).

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса BE и на стороне BC взята точка K так, что  $ \angle$AKB = 2$ \angle$AEB. Найдите величину угла AKE, если  $ \angle$AEB = $ \alpha$.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 57638  (#12.055)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В прямоугольном треугольнике ABC с прямым углом A на высоте AD как на диаметре построена окружность, пересекающая сторону AB в точке K и сторону AC в точке M. Отрезки AD и KM пересекаются в точке L. Найдите острые углы треугольника ABC, если известно, что  AK : AL = AL : AM.
Прислать комментарий     Решение


Задача 57639  (#12.056)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В треугольнике ABC угол C вдвое больше угла A и b = 2a. Найдите углы этого треугольника.
Прислать комментарий     Решение


Задача 57640  (#12.057)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В треугольнике ABC проведена биссектриса BE и на стороне BC взята точка K так, что  $ \angle$AKB = 2$ \angle$AEB. Найдите величину угла AKE, если  $ \angle$AEB = $ \alpha$.
Прислать комментарий     Решение


Задача 57641  (#12.058)

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Частные случаи треугольников (прочее) ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 9,10,11

В равнобедренном треугольнике ABC с основанием BC угол при вершине A равен 80°. Внутри треугольника ABC взята точка M так, что
MBC = 30°  и  ∠MCB = 10°.  Найдите величину угла AMC.

Прислать комментарий     Решение

Задача 57642  (#12.059)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 5+
Классы: 9

В равнобедренном треугольнике ABC с основанием AC угол при вершине B равен  20o. На сторонах BC и AB взяты точки D и E соответственно так, что  $ \angle$DAC = 60o и  $ \angle$ECA = 50o. Найдите угол ADE.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .