ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом пятиугольнике ABCDE, площадь которого равна S, площади треугольников ABC, BCD, CDE, DEA и EAB равны a, b, c, d и e. Докажите, что

S2 - S(a + b + c + d + e) + ab + bc + cd + de + ea = 0.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



Задача 57736  (#13.053)

Тема:   [ Псевдоскалярное произведение ]
Сложность: 5
Классы: 8,9

Точки P1, P2 и P3, не лежащие на одной прямой, расположены внутри выпуклого 2n-угольника A1...A2n. Докажите, что если сумма площадей треугольников A1A2Pi, A3A4Pi,..., A2n - 1A2nPi равна одному и тому же числу c для i = 1, 2, 3, то для любой внутренней точки P сумма площадей этих треугольников равна c.
Прислать комментарий     Решение


Задача 57737  (#13.054)

Тема:   [ Псевдоскалярное произведение ]
Сложность: 5
Классы: 8,9

Дан треугольник ABC и точка P. Точка Q такова, что CQ || AP, а точка R такова, что AR || BQ и  CR || BP. Докажите, что SABC = SPQR.
Прислать комментарий     Решение


Задача 57738  (#13.055)

Тема:   [ Псевдоскалярное произведение ]
Сложность: 6
Классы: 8,9

Пусть H1, H2 и H3 — ортоцентры треугольников A2A3A4, A1A3A4 и A1A2A4. Докажите, что площади треугольников A1A2A3 и H1H2H3 равны.
Прислать комментарий     Решение


Задача 57739  (#13.056)

Тема:   [ Псевдоскалярное произведение ]
Сложность: 6
Классы: 8,9

В выпуклом пятиугольнике ABCDE, площадь которого равна S, площади треугольников ABC, BCD, CDE, DEA и EAB равны a, b, c, d и e. Докажите, что

S2 - S(a + b + c + d + e) + ab + bc + cd + de + ea = 0.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .