ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В трапеции ABCD диагональ AC равна сумме оснований
AB и CD . Точка M – середина стороны BC . Точка
B' симметрична точке B относительно прямой AM .
Докажите, что
Внутри неравнобедренного треугольника ABC взята
такая точка O , что
Ханойская башня и двоичная
система счисления.
Рассмотрим два
процесса, каждый из которых состоит из 28 - 1 шагов. Первый —
это процесс решения головоломки ``Ханойская башня'' (смотри задачу
1.42) при
помощи оптимального алгоритма. Второй — это процесс прибавления
единицы, который начинается с 0 и заканчивается числом 28 - 1.
Опишите связь между этими двумя процессами.
В кубе ABCDA₁B₁C₁D₁, ребро которого равно 4, точки E и F ─ середины рёбер AB и B₁C₁ соответственно, а точки P расположена на ребре CD так, что CD = 3PD. Найдите Пусть O — центр масс системы точек, суммарная
масса которой равна m. Докажите, что моменты инерции
этой системы относительно точки O и произвольной точки X
связаны соотношением
IX = IO + mXO2.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]
На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем отрезки AA1, BB1 и CC1
пересекаются в точке P. Пусть
la, lb, lc — прямые,
соединяющие середины отрезков BC и B1C1, CA и C1A1,
AB и A1B1. Докажите, что прямые la, lb и lc
пересекаются в одной точке, причем эта точка лежит на отрезке PM,
где M — центр масс треугольника ABC.
На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1; прямые B1C1, BB1 и CC1 пересекают
прямую AA1 в точках M, P и Q соответственно. Докажите, что:
На прямой AB взяты точки P и P1, а на прямой AC взяты точки Q и Q1. Прямая, соединяющая точку A с точкой пересечения прямых PQ и P1Q1, пересекает прямую BC в точке D. Докажите, что
Пусть O — центр масс системы точек, суммарная
масса которой равна m. Докажите, что моменты инерции
этой системы относительно точки O и произвольной точки X
связаны соотношением
IX = IO + mXO2.
а) Докажите, что момент инерции относительно
центра масс системы точек с единичными массами равен
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке