ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка $O$ – центр описанной окружности остроугольного треугольника $ABC$, $AH$ – его высота. Точка $P$ – основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину стороны $AB$. Упростить выражение
Через вершины B и C треугольника ABC проведена окружность,
которая пересекает сторону AB в точке K и сторону AC в точке E.
Найдите AE, зная, что
AK = KB = a,
Найдите отношение сторон прямоугольного треугольника, если известно, что одна половина гипотенузы (от вершины до середины гипотенузы) видна из центра вписанной окружности под прямым углом.
Внутри каждой стороны параллелограмма выбрано по точке.
Выбранные точки сторон, имеющих общую вершину, соединены.
Докажите, что центры описанных окружностей четырех получившихся
треугольников являются вершинами некоторого параллелограмма.
|
Страница: << 1 2 [Всего задач: 8]
Из вершины B параллелограмма ABCD проведены его высоты BK и BH. Известны отрезки KH = a и BD = b. Найдите расстояние от точки B до точки пересечения высот треугольника BKH.
Внутри каждой стороны параллелограмма выбрано по точке.
Выбранные точки сторон, имеющих общую вершину, соединены.
Докажите, что центры описанных окружностей четырех получившихся
треугольников являются вершинами некоторого параллелограмма.
В квадрате со стороной 1 расположена фигура,
расстояние между любыми двумя точками которой не равно 0, 001.
Докажите, что площадь этой фигуры не превосходит:
а) 0, 34; б) 0, 287.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке