ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC . В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано? Две прямые пересекаются под углом |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]
Две прямые пересекаются под углом
а) Впишите в данную окружность n-угольник,
стороны которого параллельны заданным n прямым.
Дано n прямых. Постройте n-угольник, для которого
эти прямые являются: а) серединными перпендикулярами
к сторонам; б) биссектрисами внешних или внутренних углов
при вершинах.
Впишите в данную окружность n-угольник, одна
из сторон которого проходит через данную точку, а остальные
стороны параллельны данным прямым.
Точка A расположена на расстоянии 50 см от центра
круга радиусом 1 см. Разрешается отразить точку симметрично
относительно любой прямой, пересекающей круг. Докажите, что:
а) за 25 отражений точку A можно к загнатьк внутрь
данного круга; б) за 24 отражения этого сделать нельзя.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке